Exceptional service in the national interest





## Evaluation of Avian Solar-Flux Hazards and Mitigation Measures at the Ivanpah Concentrating Solar Power Plant

Clifford K. Ho,<sup>1</sup> Timothy Wendelin,<sup>2</sup> Luke Horstman<sup>1</sup>, and Cianan Sims<sup>3</sup>

<sup>1</sup>Sandia National Laboratories <sup>2</sup>National Renewable Energy Laboratory <sup>3</sup>Sims Industries

SAND2017-8778 C



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.





- Background and Objectives
- Avian Hazard Metrics and Models
- Results
- Conclusions

## **Concentrating Solar Power**



- Concentrating solar power uses mirrors to concentrate the sun's energy onto a receiver to provide heat to spin a turbine/generator to produce electricity
- Hot fluid can be stored as thermal energy efficiently and inexpensively for ondemand electricity production when the sun is not shining



#### 4

# **Problem Statement**

- Reports of birds being singed and killed by concentrated solar flux at CSP plants
  - Kagan et al. (2014)
  - Kraemer (2015)
  - Clarke (2015)
- Flux hazards attributed to heliostat standby aiming strategies
  - McCrary et al. 1984, 1986 (Solar One)









# **Bird Deterrents**

- Acoustic
  - Painful or predatory sounds
- Visual
  - Intense lights and decoys
- Tactile
  - Bird spikes, anti-perching devices
- Chemosensory
  - Grape-flavored powder drinks (methyl anthranilate)
- Ivanpah has implemented deterrents, but impact is uncertain





## Objectives



- Develop metrics and models to assess avian solar-flux hazards
  - Identify important model parameters
- Evaluate alternative heliostat standby aiming strategies
- Identify aiming strategies that reduce hazardous avian exposures and minimize impact to operational performance

## Overview



- Background and Objectives
- Avian Hazard Metrics and Models
- Results
- Conclusions

## Avian Hazard Metrics – Solar Flux

- Tests conducted with bird carcasses exposed to different flux levels (Santolo, 2012)
  - "no observable effects on feathers or tissue were found in test birds where solar flux was below 50 kW/m<sup>2</sup> with exposure times of up to 30 seconds."
  - California Energy Commission analytical study found that "a threshold of safe exposure does not exist above a solar flux density of 4 kW/m<sup>2</sup> for a one-minute exposure"





## Avian Hazard Metrics -



Bird Feather Temperature

- Feather structure can be permanently weakened at~160 °C
  - Bonds in the keratin structure are broken (Senoz et al., 2012; CEC Tyler et al., 2012)





- 1. Develop heat transfer model of bird feather temperature as a function of irradiance and convective heat loss
- 2. Develop models of irradiance in airspace above heliostat field for alternative aiming strategies
- 3. Determine bird feather temperature along flight paths above CSP plant
- 4. Record total time that bird feather exceeds safe threshold for each aiming strategy

$$T_{i+1} = T_i + \frac{1}{\rho Dc_p} \left( \alpha q_{solar} - h \left( T_i - T_g \right) - \varepsilon \sigma \left( T_i^4 - T_{sur}^4 \right) \right) \Delta t$$



- 1. Develop heat transfer model of bird feather temperature as a function of irradiance and convective heat loss
- 2. Develop models of irradiance in airspace above heliostat field for alternative aiming strategies
- 3. Determine bird feather temperature along flight paths above CSP plant
- 4. Record total time that bird feather exceeds safe threshold for each aiming strategy





- 1. Develop heat transfer model of bird feather temperature as a function of irradiance and convective heat loss
- 2. Develop models of irradiance in airspace above heliostat field for alternative aiming strategies
- 3. Determine bird feather temperature along flight paths above CSP plant
- 4. Record total time that bird feather exceeds safe threshold for each aiming strategy





- 1. Develop heat transfer model of bird feather temperature as a function of irradiance and convective heat loss
- 2. Develop models of irradiance in airspace above heliostat field for alternative aiming strategies
- 3. Determine bird feather temperature along flight paths above CSP plant
- 4. Record total time that bird feather exceeds safe threshold for each aiming strategy





- Identify aiming strategies that minimize hazardous exposure time and impact on operational performance
  - Identify heliostat travel (slew) time for each aiming strategy
  - Correlate slew time to energy production using SAM
    - Greater slew times  $\rightarrow$  reduced energy production

## **Overview**



- Background and Objectives
- Avian Hazard Metrics and Models
- Results
- Conclusions

## **Bird Feather Temperature**





Bird feather temperature strongly dependent on irradiance, which varies in the airspace depending on heliostat aiming strategy

# Sample Flux Maps (Ivanpah Unit 2)



# Simulated Bird Flight Paths



- Equally spaced grid of flight paths every 20 m
- 12 elevations
  - 80 300 m at ~20 m intervals
- 3 dates
  - Winter solstice
  - Summer solstice
  - Equinox
- 2 Times
  - Solar noon
  - 3 hours before solar noon
- Analyzed thousands of flight paths for each aiming strategy



## Results



| Heliostat Aiming<br>Strategy | Exceedance<br>Time (s)<br>>160 °C | Exceedance Time<br>Normalized to<br>Baseline | Annual Energy<br>Normalized to<br>Baseline |
|------------------------------|-----------------------------------|----------------------------------------------|--------------------------------------------|
| Baseline<br>(25 m radius CW) | 5689                              | 1                                            | 1                                          |
| Option 1<br>(25-60 m CW)     | 5993                              | 1.05                                         | 0.98                                       |
| Option 2*<br>(25-60 m)       | 6021                              | 1.06                                         | 0.98                                       |
| Option 3*<br>(25-100 m)      | 6501                              | 1.1                                          | 0.95                                       |
| Option 4*<br>(25-150 m)      | 3820                              | 0.77                                         | 0.90                                       |
| Option 5*<br>(25-200 m)      | 1751                              | 0.32                                         | 0.85                                       |
| Option 6*<br>(25-250 m)      | 543                               | 0.12                                         | 0.81                                       |
| Point Focus (160 m)          | 8258                              | 1.39                                         | 1                                          |
| Up-Aiming                    | 0                                 | 0                                            | 0.002                                      |

## Results





# **Up-Aiming Strategy**



 Up-Aiming can eliminate glare and avian flux hazards, but it increases heliostat travel time to receiver



## Tower Illuminance Model (TIM)



Web-based tool evaluates glare and avian hazards for CSP power tower plants

- Considers heliostat aiming strategies; flyover controls
- Location-dependent irradiance with visualization



## Screen Shots of "TIM"





Alternative heliostat aiming strategies

#### Avian Hazard Model and Flight Path



Position (east, vertich), north): -1303, 234, -221 m Distance: 1343 m

Camera position and glare data

## **Overview**



- Background and Objectives
- Avian Hazard Metrics and Models
- Results
- Conclusions

# Conclusions



- Models and methods developed to evaluate avian flux hazards from heliostat standby aiming strategies
  - Bird feather temperature used as metric
    - Cumulative exceedance time > 160 °C
  - Energy balance model of feather to determine temperature as a function of irradiance, wind, and other parameters
  - Irradiance determined by ray-tracing models of alternative heliostat aiming strategies
- Results show spreading aiming points may increase hazardous exposure times (time exceeding 160 °C)
  - Also reduces performance
- Need to implement aiming strategy that reduces hazardous exposure time, slew times to target, and glare

## Meetings with Industry and Stakeholders



- Introduced our work and objectives at Stakeholder meeting on March 10, 2016
  - CEC, USF&W, DOE, NRG, WEST, SolarReserve, Abengoa, SENER, NREL, SNL
- Presented work to US Fish & Wildlife in Sacramento on Feb. 1, 2017 (part of CSP Gen 3 trip)
- Held meeting with NRG, Brightsource, NREL, and Sandia on May 24, 2017, at Ivanpah
  - Presented summary of glare and avian-flux modeling and impact of alternative aiming strategies
  - Discussed implementation at Ivanpah

# Team / Collaborators



#### Sandia

- Cliff Ho (PI), Luke Horstman (avian hazard modeling), Julius Yellowhair (optical modeling)
- NREL
  - Tim Wendelin (flux modeling, avian hazards)
- Sims Industries
  - Cianan Sims (TIM)
- CSP Industry
  - NRG/Ivanpah
    - Doug Davis, George Piantka, Tim Sisk, William Dusenbury



# U.S. Department of Energy

## **Clifford K. Ho**

Sandia National Laboratories ckho@sandia.gov

### SAM Parametric Analysis of Receiver Startup Time 🗓

Sandia National

Laboratories



## Annual Performance Impact Relative to Baseline





## Some Conclusions



- Up-aiming yields best avian health result zero time @ > 160<sup>o</sup> C
- Relative to baseline case, up-aiming has largest impact on annual performance.
- Baseline case is most affected by addition of directional glare zone due to its relatively tight focusing initially.
- For all cases, maximum heliostat slew time on the order of ~15 minutes.
- Distribution of heliostat slew times varies as a function of aiming strategy.

# Solar One (Daggett, California)

- 10 MW<sub>e</sub> direct-steam pilot demonstration project
- 40 weeks of study from 1982 to 1983 (McCrary et al. 1984, 1986)
  - 70 documented bird deaths
    - 81% from collisions (mainly heliostats)
    - 19% from burns
  - Impact on local bird population was considered minimal
  - Nearly all observed incinerations ("small flashes of light within the standby points, accompanied by a brief trail of white vapor") involved aerial insects rather than birds





Barn Swallow



White-Throated Swift



## Ivanpah Solar Electric Generating System



(Ivanpah, California)

- 390 MW<sub>e</sub> direct steam powertower plant (3 towers)
- Kagan et al. (2014) found 141 bird fatalities Oct 21 – 24, 2013
  - 33% caused by solar flux
  - 67% caused by collisions or predation
- H.T. Harvey and Associates found 703 bird fatalities in first year at ISEGS
  - Study estimated 3500 bird fatalities accounting for search efficiency and scavengers removing carcasses
- ISEGS has since implemented new heliostat aiming strategies and bird deterrents



|           | Number of Detections |        |        |      |       |
|-----------|----------------------|--------|--------|------|-------|
| Cause     | Winter               | Spring | Summer | Fall | Total |
| Singed    | 27                   | 100    | 42     | 147  | 316   |
| Collision | 14                   | 15     | 10     | 45   | 84    |
| Other*    | 5                    | 5      | 2      | 3    | 15    |
| Unknown   | 51                   | 82     | 61     | 94   | 288   |
| Total     | 97                   | 202    | 115    | 289  | 703   |

\* Includes detections in ACC buildings without evidence of singeing or collision effects.

H.T. Harvey and Associates, 2013 - 2014

## **Crescent Dunes**

(Tonopah, Nevada)

- 110 MW<sub>e</sub> molten-salt power tower
- In January 2015, 3,000
  heliostats were aimed at standby points above receiver
  - 115 bird deaths in 4 hours (Stantec compliance report)
  - SolarReserve spread the aim points to reduce peak flux to < 4 kW/m<sup>2</sup>
    - Reported zero bird fatalities in months following change\*





Figure 1 – The halo created by the reflected light of 3,000 heliostats which caused the bird mortalities.

\* https://cleantechnica.com/2015/04/16/one-weird-trick-prevents-bird-deaths-solar-towers/

Images from http://cleantechnica.com



## Levelized Avian Mortality for Energy (Ho, 2015)



Sandia

National Laboratories

## Feasibility of Bird Vaporization



Sandia

National Laboratories

## Heliostat Standby Aiming Strategies 🖻 Sandia Laboratories

(Personal communication – Nitzan Goldberg, Brightsource Energy, 7/22/14)

- Option 1 (original)
  - Standby points are as close to the receiver as possible
  - Each heliostat as its own aim point depending on azimuth and distance
  - Each heliostat aims to the left side of the receiver



Quiver plots showing flux vectors near the receiver from a sample of heliostats for Option 1

## Heliostat Standby Aiming Strategies 🔂 Sandia National Laboratories

(Personal communication – Nitzan Goldberg, Brightsource Energy, 7/22/14)

- Option 2 (Unit 1 during April 24 flyover?)
  - Standby points are as close to the receiver as possible
  - Each heliostat as its own aim point depending on azimuth and distance
  - Aiming is to both sides of the receiver



Quiver plots showing flux vectors near the receiver from a sample of heliostats for Option 2

## Heliostat Standby Aiming Strategies 🔂 Sandia National Laboratories

(Personal communication – Nitzan Goldberg, Brightsource Energy, 7/22/14)

- Option 3 (Units 1 and 2 during July 22 flyover)
  - Spread standby points to reduce flux density in air around receiver and to disperse the observable glare
  - Aiming is to both sides of the receiver



Quiver plots showing flux vectors near the receiver from a sample of heliostats for Option 3